Entropy-based fuzzy clustering and fuzzy modeling
نویسندگان
چکیده
Fuzzy clustering is capable of finding vague boundaries that crisp clustering fails to obtain. But time complexity of fuzzy clustering is usually high, and the need to specify complicated parameters hinders its use. In this paper, an entropy-based fuzzy clustering method is proposed. It automatically identifies the number and initial locations of cluster centers. It calculates the entropy at each data point and selects the data point with minimum entropy as the first cluster center. Next it removes all data points having similarity larger than a threshold with the chosen cluster center. This process is repeated till all data points are removed. Unlike previous methods of its kind, it does not need to revise entropy value for each data point after a cluster center is determined. This saves a lot of time. Also it requires just two parameters that are easy to specify. It is able to Iind the natural clusters in the data. The clustering method is also extended to construct a rule-based fuzzy model. A new way of estimating initial membership functions for fuzzy sets is presented. The experimental results show that the fuzzy model is good in predicting output variable values. @ 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملFuzzy Clustering Based on Generalized Entropy and Its Application to Image Segmentation
Fuzzy clustering based on generalized entropy is studied. By introducing the generalized entropy into objective function of fuzzy clustering, a unified model is given for fuzzy clustering in this paper. Then fuzzy clustering algorithm based on the generalized entropy is presented. At the same time, by introducing the spatial information of image into the generalized entropy fuzzy clustering alg...
متن کاملA Kernel Fuzzy Clustering Algorithm with Generalized Entropy Based on Weighted Sample
Aiming at fuzzy clustering with generalized entropy, a kernel fuzzy clustering algorithm with generalized entropy based on weighted sample is presented. By introducing weight of sample into objective function for fuzzy clustering with generalized entropy, we obtain optimization problem for fuzzy clustering with generalized entropy based on weighted sample. And we use Lagrange multiplier method ...
متن کاملA Weighted Sample’s Fuzzy Clustering Algorithm With Generalized Entropy
Combined with weight of samples and kernel function, fuzzy clustering method with generalized entropy is studied. Objective function for fuzzy clustering with generalized entropy based on sample weighting is obtained. Following that, fuzzy clustering algorithm with generalized entropy based on sample weighting is presented. In addition, by introducing kernel into the presented objective functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 113 شماره
صفحات -
تاریخ انتشار 2000